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Capillary flow in an interior corner
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The design of fluids management processes in the low-gravity environment of space
requires an accurate description of capillarity-controlled flow in containers. Here we
consider the spontaneous redistribution of fluid along an interior corner of a container
due to capillary forces. The analytical portion of the work presents an asymptotic for-
mulation in the limit of a slender fluid column, slight surface curvature along the flow
direction z, small inertia, and low gravity. The scaling introduced explicitly accounts
for much of the variation of flow resistance due to geometry and so the effects of
corner geometry can be distinguished from those of surface curvature. For the special
cases of a constant height boundary condition and a constant flow condition, the
similarity solutions yield that the length of the fluid column increases as t1/2 and t3/5,
respectively. In the experimental portion of the work, measurements from a 2.2 s drop
tower are reported. An extensive data set, collected over a previously unexplored range
of flow parameters, includes estimates of repeatability and accuracy, the role of inertia
and column slenderness, and the effects of corner angle, container geometry, and fluid
properties. At short times, the fluid is governed by inertia (t <∼ tLc). Afterwards, an
intermediate regime (tLc

<∼ t <∼ tH ) can be shown to be modelled by a constant-flow-
like similarity solution. For t > tH it is found that there exists a location zH at which
the interface height remains constant at a value h(zH, t) = H which can be shown
to be well predicted. Comprehensive comparison is made between the analysis and
measurements using the constant height boundary condition. As time increases, it is
found that the constant height similarity solution describes the flow over a lengthening
interval which extends from the origin to the invariant tip solution. For t � tH , the
constant height solution describes the entire flow domain. A formulation applicable
throughout the container (not just in corners) is presented in the limit of long times.

1. Introduction
The mechanism for capillary flows in interior corners is perhaps best introduced

via an illustrative example. Figure 1 depicts a container with a square cross-section
partially filled with a liquid in a strong gravitational field. Most of the interface is flat.
However, as is commonly observed, especially in the corner regions of the container,
the interface curves in order to satisfy the contact angle wetting condition along the
perimeter of the interface. A magnified view of the corner region shows that the local
radius of curvature Ri of the meniscus decreases as the corner is approached. Since
the pressure drop across the meniscus is inversely proportional to Ri it follows that
a pressure gradient along the corner is established in the wetting liquid. If gravity is
suddenly ‘turned off’, the balance of this gradient with hydrostatic forces is disrupted

† Current address: TDA Research, 12345 W. 52nd Ave., Wheat Ridge, CO 80033, USA.
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Figure 1. Partially filled square cross-sectioned container in 1–g.

and, as is illustrated in figure 2, slender columns rise as the fluid is pumped up the
corners by capillary forces.

This work considers capillary flow along interior corners†, as a vessel’s corners often
provide the main conduit of capillary pumping under favourable wetting conditions.
Such capillary pumping arises in numerous contexts and is particularly prevalent in
low-gravity environments encompassing most, if not all, in-space fluids management
processes, including the positioning, control, and transport of liquids, such as fuels in
storage tanks, thermal systems such as heat pipes and capillary pumped loops, and
the storage and handling of biological fluids and wastes (Jaekle 1991; Rollins, Grove
& Jaekle 1985; Koster & Sani 1990). Examples of terrestrial applications include
flows in porous media and the wetting and spreading of fluids on irregular surfaces
– flow processes which are commonplace in nature and industry (Kistler 1993; Steen
1996).

The corner flow problem was recently studied by Dong & Chatzis (1995) who
employed 0.3–0.5 mm diameter tubes of square cross-section in an analysis and
experiment on imbibition as it relates to flows in porous media. Other relevant work
was performed by Kolb & Cerro (1993), Legait (1983), Ma, Peterson & Lu (1994),
and Singhal & Sommerton (1970). As in previous and related studies (Ransohoff
& Radke 1988 and Ransohoff, Gauglitz & Radke 1987), it was assumed that the
flow is locally parallel, and that streamwise curvature and inertia are negligible; the
‘slow’ flows and ‘small’ container size of these experiments provide an intuitive basis
for such an approach. For a system of equivalent Bond number (Bo = ρgH2/σ)
in a low-gravity environment, however, these assumptions come into question. For
example, a measure of the influence of inertia in capillary-driven flows is provided by
the Suratman number

Su = σρH/µ2, (1.1)

which is a Reynolds number based on the capillary velocity scale σ/µ, where µ is
dynamic viscosity, ρ is density, and σ is interfacial tension. (Note that Su = Oh−2

where Oh is the Ohnesorge number.) A strong capillary presence is maintained when

† Interior corners are often referred to as grooves, edges, or wedges in the literature. A selection
of pertinent references on capillary statics may be found in Concus & Finn (1990), Mason &
Morrow (1991), Langbein (1990), and Wong, Morris & Radke (1992).
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Figure 2. Selected frames from the cinefilm records of capillary rise in an equilateral triangle,
D = 22.6 mm, for 2.0 cS fluid at 0.2 s intervals (run LT2). The left-most frame in the sequence is at
1–g, with gravity downward. The subsequent five frames are during free-fall. A schematic of the top
cross-sectional view of the cell is also shown. After nullification of the forces due to gravity, slender
columns of fluid advance along the corners due to capillary forces. The retreating bulk meniscus
takes the approximate form of a hemispherical cap.

the characteristic interfacial dimension H scales as the capillary length, H <∼ (σ/ρg)1/2.
Therefore, Su ∼ (σ3ρ/µ4g)1/2. Thus, in a microgravity environment (g ∼ 10−6go, where
go

.
= 9.812 m s−2) the parametric range of Su is extended up to 3 orders of magnitude.

Values of Su from low-g experiments presented herein are ∼ O(104) compared with
similar normal-gravity tests by Dong & Chatzis (1995) where Su ∼ O(1). More
dramatic yet are the changes which might be expected in the viscous time scale
tvisc ∼ ρH2/µ. With a 1000-fold increase of H , realizable in a low-gravity environment,
tvisc increases by 106 over its normal-gravity counterpart! Increases in volumetric flow
rate due to capillary pumping in a low-g environment are expected to be similarly
high.

Part of the difficulty in treating flow in corners is that the two-dimensional problem
of flow through a wedge-shaped cross-section with a concave or convex free surface
has no closed-form solution. The two-dimensional problem has been treated using
finite elements and the flow resistance determined (Ayyaswamy, Catton & Edwards
1974; Ransohoff & Radke 1988). These tabulated values of the friction factor vary
widely as a function of geometry; for example, they can take any positive value
6 <∼ β <∼ ∞, where β is the dimensionless flow resistance determined by Ransohoff &
Radke (1988). In the present work, the scaling incorporates the geometrical aspects of
this dependence through a flow resistance coefficient Fi; the remaining hydrodynamic
contribution is a weak function of geometry and varies only within 1/8 <∼ Fi

<∼ 1/6.
From such scaling, the interpretation of the geometrical effects are made obvious: for
example, changes in contact angle affect the flow primarily by altering the driving
pressure gradient (interface curvature) while changing the cross-sectional area only
slightly, §3.4.
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Emphasis is placed here on an asymptotic solution subject to the constraint that
the interface height is constant at some location – a model for the ‘capillary rise’
problem introduced in figure 2. It has been found that utilizing this constraint as an
upstream boundary condition yields good results for long times (Dong & Chatzis
1995). However, the use of this boundary condition is not self-evident and has lacked
quantitative support, particularly for problems in which the initial transient plays
a substantial role during the flow process, a characteristic of large-scale low-gravity
flows. Experimental verification of this boundary condition as well as the asymptotic
solutions, reproducibility and the influence of fabrication procedures is based on a
large data set made possible by ready access to the drop tower at NASA’s Lewis
Research Center.

In §2 the corner flow problem is formulated as a perturbation problem. Similarity
solutions are presented in §3. For the central problem of this paper, that of capillary
rise, we introduce the constant height boundary condition and show how the height
can be computed from the shape of the equilibrium meniscus using the approach of
de Lazzer et al. (1996). In §4–§5 experimental results for the capillary rise problem
are compared with the similarity solution for Su in the range of 202 to 41 300. The
formulation of a global similarity solution applicable throughout the container is
introduced in §6. Finally, §7 summarizes the major results of the paper.

2. Formulation
Consider an isolated interior corner of angle 2α as depicted in figure 3. The corner is

partially filled with a fluid making contact angle θ with the solid surfaces and satisfying
the Concus–Finn condition, θ < π/2−α. (In their mathematical study, Concus & Finn
(1969, 1974, 1990) were the first to obtain the result of the discontinuous behaviour
of an interface in a corner at the critical value θ = π/2 − α; when θ < π/2 − α the
fluid spontaneously wicks into the corners. This condition appears also in heuristic
studies concerning interfacial phenomena.) The z′-axis lies along the corner, and S ′

is the height of the free surface as measured from the (y′, z′)-plane. With L the
characteristic length of the column of fluid along the z′-axis and H the characteristic
height of the meniscus in the corner along the x′-axis, then ε = H/L indicates the
‘slenderness’ of the flow geometry.

Table 1 provides the quantities used to non-dimensionalize the governing equations.
Primes are used to denote dimensional dependent and independent variables. To the
greatest extent possible, the scaling incorporates the flow geometry. The pressure is
scaled using σ/Hf, where f−1 = (f(α, θ))−1 is a geometric function describing the
curvature of the meniscus in the (x′, y′)-plane, to be defined later. This curvature scale
holds when the curvature in the (x′, z′)-plane (∼ ∂2S ′/∂z′

2) is small by comparison,
ε2f � 1. The characteristic z′-component of velocity, W , is determined through a
balance of pressure and viscous forces and incorporates the geometric influence of α
and θ.

The non-dimensionalized Navier–Stokes equations are to be solved together with
the continuity equation in the form

At = −Q̇z = −(A〈w〉)z, (2.1)

where A is the cross-sectional area of the flow in the (x, y)-plane, Q̇ is the volumetric
flow rate in the z-direction, and 〈w〉 ≡ Q̇/A. A passive overlaying fluid is assumed
and body forces are ignored.

The boundary conditions are the no-slip condition along the walls, the streamwise
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Figure 3. A fluid column in an isolated corner of angle 2α. The coordinate system is aligned
such that the z′-axis is along the corner. The three-dimensional surface profile is given in terms of
S ′(y′, z′, t). The characteristic height and length of the fluid column are H and L, respectively. The
contact angle is θ.

Lengths Velocities Other

x = x′/H u = u′/εW P = HfP ′/σ
y = y′/H tan α v = v′/εW tan α t = Wt′/L
z = z′/L w = w′/W A = A′/H2 tan α
S = S ′/H 〈w〉 = 〈w〉′/W Q̇ = Q̇′/WH2 tan α

h = h′/H W = εσ sin2 α/µf
L =L′/L

Table 1. Non-dimensionalized dependent and independent variables.

(confined to the (x, z)-plane) and transverse zero shear stress conditions on S , and
the normal stress condition on S . Two additional boundary conditions on S are the
meniscus centreline location and a symmetry condition on y = 0, namely

S = h on y = 0, (2.2)

Sy = 0 on y = 0, (2.3)

where h = h(z, t). The remaining boundary conditions on S concern the treatment of
the moving contact line. This poses particular difficulties in that the physics of the
moving contact line is not fully understood due to the well-known stress singularity at
the contact line itself (Dussan V. 1979; Kistler 1993). The simplest formulation of the
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moving contact line boundary condition is the case of fluid statics where the condition

n · k = cos θ (2.4)

is applied. In (2.4), θ is the static (or perhaps equilibrium) contact angle of the
fluid-solid pair†, k is the inward normal to the container walls (on y = ±x) given by
k = (sin α,∓ cos α, 0), and n is the outward unit normal to S . This boundary condition
is strictly valid when v = 0 and may be approximately correct when the fluid velocity
perpendicular to the contact line is small (Ca ≡ µUcl/σ � 1). This is, in general,
the case for the corner flow problem discussed here where the predominant flow
direction is parallel to the contact line. The net effect of applying (2.4) is to yield the
two remaining boundary conditions for S , namely the slope and the location of the
interface at the contact line, in terms of h. The inlet and outlet conditions at z = 0
and z = 1 and the initial conditions remain to be addressed.

2.1. Asymptotic equations

For the lubrication approximation, ε2 � 1, the dependent variables u, v, w, P and
S are expanded in asymptotic series. Assuming R ≡ (Su ε2 sin4 α)/f ∼ O(ε2), the
leading-order Navier–Stokes equations reduce to the single z-component equation

Poz = woxx sin2 α+ woyy cos2 α. (2.5)

Also to leading order, the no-slip, shear and normal stress boundary conditions may
be expressed as

wo = 0 on y = x,

wox − Soywoy cot2 α = 0 on x = So,

−Po = fSoyy cot2 α
(
1 + So

2
y cot2 α

)−3/2
on x = So,

 (2.6)

where the transverse shear stress condition does not appear, as it is O(ε). The
remaining boundary conditions are

woy = 0 on y = 0,

So = h on y = 0,

Soy = 0 on y = 0,

So = ym on y = ym,

1 + Soy cot2 α(
1 + So

2
y cot2 α

)1/2
=

cos θ

sin α
on y = ym.

Noting that Po = Po(z, t), the normal–stress equation (2.6) may be solved directly
with its associated boundary conditions to find So, ym, f, and Po(h). In this way the
asymptotic analysis dictates that, to leading order, the fluid interface along the corner
is a construct of circular arcs in planes parallel to the (x′, y′)-plane. Solutions to
(2.6) and its associated boundary conditions are obtained by solving the geometrical
‘cross-flow’ problem sketched in figure 4 for the pressure in the liquid as a function
of meniscus height h(z, t), with the dimensional radius of curvature given by R′ = fh′

† If contact angle hysteresis is present and the contact line is in motion, θ might best be taken
as the advancing angle on first approximation. For a clear definition of the distinction between
static and equilibrium contact angle and for a discussion of the difficulties faced when contact angle
hysteresis is present in systems exhibiting partial wetting see Kistler (1993, p. 328).
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Figure 4. The dimensionless variables used in the cross-flow formulation (2.5)–(2.6). The height
of the interface at a given z is So(y, h), where h(z, t) is the height at y = 0. The contact line is
located at y = ym = hf sin δ cot α. When presented, as here, on the dimensionless (x, y)-plane, the
contact angle θ and the interface curvature angle δ appear as θ∗ = π/4 − tan−1(tan α tan δ) and

δ∗ = sin−1(sin δ cot α).

(note that the curvature of the interface is not constant in the dimensionless (x, y)-
plane). This yields

Po = −1/h, (2.7)

So = h(1 + f)− fh
(

1−
(
y tan α/fh

)2
)1/2

, (2.8)

ym = fh sin δ/ tan α, (2.9)

f =

(
cos θ

sin α
− 1

)−1

=

(
sin(α+ δ)

sin α
− 1

)−1

, (2.10)

where δ ≡ π/2− α− θ. The angle δ measures the degree of curvature of the interface
in the (x, y)-plane.

The use of f in the non-dimensionalization of the problem leads to the simple
expression for Po given in (2.7) and the sign of f indicates either positive or negative
curvature of the interface and thus the anticipated flow direction of the z-component
velocity. Positive curvature is depicted in figure 4, and f > 0 for systems satisfying
the Concus–Finn condition. The parameter f characterizes the strength of the driving
force for the flow due to curvature of the interface, independent of the cross-flow
area. The parameter FA = FA(α, δ) is the cross-sectional area function (A′ = h′

2
FA)

and may be determined geometrically,

FA =
f2 sin2 δ

tan α

(
1−

(
2δ − sin 2δ

1− cos 2δ

)
tan α

)
. (2.11)

Figure 5 shows FA and f plotted against δ for a variety of corner half-angles α. Note
that FA shows only weak functional dependence on δ for fixed α, and that for all α
and δ, 1 6 FA/ tan α <∼ 4/3. Note also that f behaves like 1/δ for δ → 0.

Regardless of the technique employed to solve (2.5), the resulting form for 〈wo〉 is

〈wo〉 = −Fih2Poz = −Fihz, (2.12)

where Fi is a positive geometric function of α and δ. Viscous resistance (∼ h−2) is
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Figure 5. The parameters f and FA as a function of δ ≡ π/2 − α − θ for various α (deg.). f−1

indicates the strength of the capillary driving force. For given centreline height, FA is proportional
to the dimensional cross-sectional area of the flow.

balanced by capillary forces (∼ h−2hz) in such a way as to leave 〈wo〉 dependent only
on the slope of the interface hz , and not on h. As a result, non-zero velocities are
possible for h→ 0+ provided hz 6= 0.

Noting that A ∝ h2 (2.12) is substituted into (2.1) yielding

2ht = Fi
(
2h2

z + hhzz
)
. (2.13)

We now turn to evaluating the coefficient Fi.

2.2. Flow resistance, Fi

Generally speaking, Ransohoff & Radke (1988) and Ayyaswamy et al. (1974) have
determined Fi for this problem.† They first use a finite element scheme to solve
(2.5) for wo. They then integrate over the cross-sectional area to determine 〈wo〉 and
tabulated results are presented in terms of either a dimensionless flow resistance, β,
in the case of Ransohoff & Radke, or a dimensionless friction factor coefficient, K , as
in the case of Ayyaswamy et al. Also, Ransohoff et al. (1987) employ the continuity
equation in the general form of (2.13) to numerically solve for a problem relating to
snap-off in constricted pores, while Dong & Chatzis (1995) find a similarity solution
applicable to imbibition in square capillary tubes. The usefulness of these solutions
is that they are only restricted to ε2 � 1 (slender fluid column), ε2f � 1 (slight
curvature along z-axis), and R ∼ O(ε2) (small inertia). For many practical systems
f ∼ O(1) and the second constraint is satisfied by the first. The tabulated values of
β and K vary over a wide range. However, much of this variation can be consumed

† Lenormand & Zarcone (1984) and L. Trefethen (unpublished, 1990) use a hydraulic diameter
approach in effect to determine Fi, the utility of which is discussed in Ransohoff & Radke (1988).
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Figure 6. The flow resistance, Fi(α, θ). The value of Fi falls between the curves for δ = 0 and
δ = π/2− α (i.e. θ = 0) approximated by dashed lines from the data of Ransohof & Radke (1988)
(©) and Ayyaswamy et al. (1974) (�). With the scaling introduced in table 1, it is seen that for all
α and δ, 1/8 <∼ Fi

<∼ 1/6. The dotted lines emanating from 4 show the asymptotic approximations
valid in the limits of small (FI ) and large (FII ) α, as determined in the Appendix; � is from an
exact solution (FIII ) for α = θ = π/4, also given in the Appendix.

through scaling. Furthermore, under certain restricted conditions, once scaled, it is
possible to find analytic forms for the flow resistance Fi.

From the definition of β, it can be shown that Fi = f2/β sin2 α. Though the
tabulated values of β yield a semi-infinite range of values 6 <∼ β <∼ ∞ for the
full range of θ and α satisfying the Concus–Finn condition, Fi varies only slightly
1/8 <∼ Fi

<∼ 1/6, see figure 6. Ayyaswamy et al. (1974) considered gravity-driven
capillary flow in triangular grooves and calculated a friction factor coefficient K .

It can be shown that Fi = 8
(
FA/f sin δ

)2
/K . Over the range of tabulated values

5◦ 6 α 6 60◦ and 0 6 δ 6 84.9◦ it is found that 30 <∼ K <∼ 57. However, while
K ∼ O(10), note that Fi ∼ O(1) and the variation of Fi is considerably less than
that of K . Thus the characteristic quantities introduced in table 1 appropriately scale
the governing equations; in particular 1/ sin2 α and 1/f appearing in W capture the
respective geometric components of viscous resistance and capillary driving force for
the flow.

For the limiting cases of small and large corner half-angle α, asymptotic techniques
yield an approximate value for the flow resistance Fi. In addition, an exact analytic
expression for Fi is possible for the special cases of θ = α = π/4. These solutions are
presented in the Appendix and the results are shown on figure 6. Solutions for Fi for
liquids with large surface viscosity are presented in Weislogel (1996).

With Fi determined from numerical or analytical techniques (2.13) is transformed
into the governing partial differential equation

hτ = 2h2
z + hhzz, (2.14)
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where τ = Fit/2. Gravity acting along the x-direction, gx, may be considered by modi-
fying the pressure gradient such that Poz =

(
h−2 + BoH

)
hz , where BoH = fρgxH

2/σ is
the Bond number based on surface curvature (via f). A pressure gradient (e.g. gravity)
acting along the z-direction leads to an additional term in (2.14) which if included
would recover the foam drainage equation recently reviewed by Verbist, Weaire &
Kraynik (1996) and applied to the corner flow problem by Kovscek & Radke (1996).

3. Similarity solutions
In this section the generalized similarity ODE for h(z, t) is introduced. Solutions

applicable to the special cases of a constant height boundary condition and a constant
inlet flow condition are reviewed. Such solutions serve as models for the spontaneous
flows of capillary rise and a constant flow rate, respectively, as will be discussed.
Other solutions are only briefly discussed as they can be found in the literature (see
Mayer, McGrath & Steele 1983 where related solutions are presented in the context
of nonlinear heat conduction, and Barenblatt & Zel’dovich 1972 for an earlier review).
All of the cases considered possess an advancing meniscus at the tip. The location of
the tip on the z-axis is denoted by L =L(τ), where h(L, τ) = 0 is assumed.

The introduction of

h = τaF(η), η = |b|1/2zτb, L = ηtip|b|−1/2τ−b, (3.1)

leads to similarity in (2.14) when b = −(1 + a)/2. By further noting that the result is
invariant under the transformation F = λ2F+ and η = λη+, the common requirement
of h(L, τ) = F(ηtip) = F+(η+

tip) = 0 for problems involving an advancing tip permits

the determination of the slope at the tip, namely F+
η+(η+

tip) = −η+
tip/2. Due to the

added degree of freedom introduced by λ it is convenient to set η+
tip = 1. When

numerical solution is necessary, knowing both F+ and F+
η+ at the tip allows a single-

step backwards Runge–Kutta method. The parameter λ, and hence F and η, can then
be determined by the applicable boundary condition or integral constraint. Equation
(2.14) thus transforms to the invariant similarity equation

F+F+
η+η+ + 2F+

η+

2
+ η+F+

η+ −
2a

1 + a
F+ = 0, (3.2)

subject to F+(1) = 0 and F+
η+(1) = −1/2.

Figure 7 presents solutions to (3.2). Solutions do not intersect the positive F+-axis
for a < −1/3. For a = 1 a linear solution F+ = (1 − η+)/2 holds. Furthermore, the
linear solution is the asymptote for all a as η+ → 1.

The difficulty now faced is one of identifying practical boundary conditions. This
can be accomplished by assuming that the dimensional volume Q′ of fluid in the corner
η+ > 0 is Q′ ∝ t′

m

. The condition for similarity which now reads 5a + 1 − 2m = 0,
leads to an integral volume constraint on the volume of fluid flow into the corner
η+ > 0,

λ5

(
2

|1 + a|

)1/2 ∫ 1

0

F+2
dη+ = km, (3.3)

where km = k′m
(
2L/FiW

)m
/FAH

2L and k′m is a constant. Recall (e.g. from (2.12))
that a positive (negative) slope of the curves in figure 7 indicates flow in the negative
(positive) η+-direction. So, for m < 0 (−1/3 6 a < −1/5) the volume within the
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Figure 7. Similarity function F+(η+). For the capillary rise problem discussed in §3.1 a = 0. A drop
spreading along the corner is described by a = −1/5; the constant flow rate boundary condition
corresponds to a = 1/5, and exponential flow rate to a� 1. For a = 1, F+(η+) is linear. Solutions
for all values of a are asymptotic to the linear solution as they approach the tip η+ = 1.

corner is decreasing due to removal of fluid at the origin. For m > 0 (a > −1/5) there
is inflow at the origin.

3.1. Constant height condition (capillary rise)

Consider an initially flat interface (Boi � 1) in the (x, y)-plane. Gravity, acting in the
negative z-direction, is suddenly ‘turned off’ and the flow proceeds up the corner in
the positive z-direction due to capillary forces (as in figure 2). The choice of a and b
for this problem is not obvious. In §4, it is shown that there is a z-location such that
the interface height is constant for long enough times. This height is approximated
by de Lazzer et al. (1996) who determine the shape of static menisci in polygonal
cylinders. Given the value of the curvature of the free surface, there is an equilibrium
value for the pressure jump across the free surface. Here, it is assumed that at the
z-location which locally satisfies the equilibrium condition, the interface height is
steady. Then, the dimensional height H for rectangular cross-sectioned cylinders of
dimensional face widths Di is

Hrect =
jD2

4f

sin(α+ δ)

FĀ

[
1−

(
1− D1

D2

4FĀ

j2 sin2(α+ δ)

)1/2
]
, (3.4)

and for n-sided regular-polygons of face width D it is

Hn−poly =
D

2f

sin(α+ δ)

FĀ

[
1−

(
1− FĀ cot π/n

sin2(α+ δ)

)1/2
]
≡ FHD, (3.5)

where δ = π/n−θ, α = π(n−2)/2n, j = 1+D1/D2 and FĀ = sin2 δ/ tan α+sin δ cos δ−
δ. From (3.4), for variations of the aspect ratio 0 6 D1/D2 6 1, it can be shown that
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§ Flow a ηtip Fη(ηtip) F(0) Fη(0)

3.1 Const. height 0 1.702 −0.851 1 −0.349
3.2 Const. flow 1/5 1.917q1/5 −0.958q1/5 1.470q2/5 −0.598q1/5

3.3 Const. vol. −1/5 1.801κ1/5 −0.901κ1/5 0.811κ2/5 0
3.3 Exp. flow � 1 1.252 −0.626 1 −0.481
3 Linear profile 1 1.644 −0.822 1.351 −0.822

Table 2. As described in the sections indicated, solutions to (3.2) describe different types of flows,
as set by the similarity parameter a. In terms of the similarity variables, the position ηtip and slope
Fη(ηtip) of the tip of the fluid column and the height F(0) and slope Fη(0) at the origin are given.

1/2 <∼ Hf cos θ/D1
<∼ 1, and so the effect of aspect ratio is weak. In §4 we compare

the predicted height H3−poly with experimental measurement.
Based on the above considerations it is conjectured that for τ > τH there exists a

location zH such that the interface height h(zH, τ) remains constant. With no loss of
generality, the location of zH is transferred to the origin z = 0 and h(0, τ) = 1. To
satisfy this condition it is necessary to choose (m = 1/2). The numerical solution to
(3.2) is shown in figure 7 (a = 0) and gives F+(0) = 0.345 . . . and F+

η+(0) = 0.205 . . ..
The location and slope of the interface at the tip, and the height and slope of the
interface at η = 0 are determined and listed in table 2 as ηtip, Fη(ηtip), F(0), and Fη(0),
respectively.

3.2. Constant inlet flow rate

When the flow rate q at the inlet (z = 0) is held fixed, the amount of fluid in
the corner increases linearly with time (m = 1). The integral mass balance of (3.3)
demands a = 1/5 and yields

λ5(5/3)1/2

∫ 1

0

F+2
dη+ = 2q, (3.6)

where q is the prescribed dimensionless constant flow rate at η = 0. Numerical
solution of (3.2) for a = 1/5 gives F+(0) = 1.400 . . . and F+

η+(0) = −0.312 . . . and is
presented graphically in figure 7.

3.3. Other solutions

Additional similarity solutions are available for analyses of corner flows: the condition
a = −1/5 (m = 0) models a drop of volume H3 (dimensionless drop volume κ =
ε/2FA) spreading symmetrically about η+ = 0. For this choice of a (3.2) is solved

analytically to yield F+ = (1 − η+2
)/4 from which the entire three-dimensional

surface may be expressed explicitly. The detailed character of this solution along with
experimental verification as it relates to the practical problem of a spreading drop
is given in Weislogel & Lichter (1996). A solution for exponential increase in h(0, τ)
is also possible (Marshak 1958) and is modeled by (3.2) in the limit a � 1. The
dimensional result for h(z, t) is h = hoF(η) exp[rt], where r (in s−1) is the rate exponent.
These solutions are included in figure 7 and useful numerical quantities for these
cases are in table 2.

3.4. Geometric effects

The dependence of the flow on geometry is well accounted for within the scaling.
This is best seen from the dimensional form of the results. For the similarity solutions
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§ Flow a L(t) Q̇(0, t)

3.1 Const. height 0 1.702G1/2H1/2t1/2 0.349FAG
1/2H5/2t−1/2

3.2 Const. flow 1/5 1.634(F−1
A Q̇)1/5G2/5t3/5 Q̇

3.3 Const. vol. −1/5 1.879F
−1/5
A G2/5H3/5t2/5 0

3.3 Exp. flow � 1 1.252(hoG/r)
1/2 exp[rt/2] 0.306FAh

5/2
o (rG)1/2 exp[5rt/2]

– Linear flow 1 0.822εGt 0.375ε5FAG
3t2

Table 3. Dimensional (primes dropped) tip location L(t) and flow rate Q̇(0, t) at the origin for the
similarity solutions derived in the subsections shown. G ≡ σFi sin2 α/µf.

discussed above, table 3 lists the dimensional tip location and flow rate, where
G ≡ σFi sin2 α/µf.

Considering the case of the constant height boundary condition and recalling that
Fi varies only slightly, it can be shown that in n-sided polygons, for δ � 1 with
α fixed, L ∼ 1/f. Since f is a direct measure of the driving pressure gradient, the
effect of increasing contact angle, or equivalently the limit δ → 0, should be seen
as impacting the tip location L by reducing primarily the driving pressure gradient
through f as opposed to the cross-sectional area for flow. This is also true for the
flow rate Q̇ ∼ G1/2H5/2. This explanation holds true for each of the flow scenarios
solved herein.

As can be easily computed from table 3, the spreading rate is maximized when
θ = 0, α ' 17◦ for the constant flow rate and constant volume problems. For the
constant height and exponential flow rate solutions the rate is maximized when θ = 0,
α ' 30◦.

4. Capillary rise experiments
This section describes experiments on the capillary rise of a liquid in an interior

corner in a low-gravity environment. Digitized surface traces of the developing flow are
compared with the analytical results of the preceding section. Additional experiments
conducted to quantify the broader effects of corner angle, container size, interior
surface conditions, and a wide range of fluid properties including system contact
angle will be described in a subsequent publication.

4.1. Introduction to low-g experimentation

Experimentation in a low-gravity environment is unique in several respects. Capillary
flows can be orders of magnitude larger than their normal-gravity counterparts.
The large cell size, in addition to extending the range of certain fluid parameters,
also allows greater precision in container fabrication, diminishing the role of surface
contamination through corner irregularity and roundedness, surface roughness, and
other heterogeneities.

A 2.2 second drop tower test facility at NASA’s Lewis Research Center is used
to access the low-g environment for the capillary rise tests. Though the low-g time
afforded by the drop tower is limited, the cells tested are sized to make adequate use
of the time available. The drop tower is approximately 27 m in height. Gravity levels
of 10−4go are common. A detailed description of this facility may be found in Lekan
et al. (1996). The description here is restricted to the test/drop rig apparatus.



362 M. M. Weislogel and S. Lichter

ν ±2% ρ ±5 σ ±5%
(cS) (kg m−3) (N m−1) ND

0.65 760 0.0159 1.374
1.0 816 0.0174 1.383
2.0 872 0.0187 1.390
5.0 913 0.0197 1.396

10.0 935 0.0201 1.399
20.0 949 0.0206 1.399

Table 4. Test fluids and properties. Polydimethylsiloxane (PDMS, silicone oil) provided by Dow
Corning. The static contact angle θstat = 0 on all surfaces. The kinematic viscosity, density, and
surface tension are denoted by ν, ρ, and σ, respectively. The refractive index is ND .

Cell cross-section D or D1 × D2 α
(section type) (±0.05 mm) (deg.)

equil. triangle 12.0 30
equil. triangle 22.6 30
near square 6.1× 6.7 45
near square 12.9× 13.2 45
rectangle 6.0× 13.0 45
rectangle 6.1× 25.6 45

Table 5. Acrylic test cell data for capillary rise tests. The refractive index is ND = 1.491, the total
length of the cell is 150 mm, the corner half-angle is α, and, for cross-sectional shapes in which the
face widths are equal (unequal), the face widths are D (D1, D2).

4.2. Description of the experiment

A transparent test cell is installed in a drop rig apparatus. Prior to release of the
apparatus into free fall, a prescribed amount of fluid is injected into the cell, partly
filling it. Upon release, hydrostatic forces are essentially eliminated and capillary-
driven flow results. As fluid is drawn downstream along the corners, the fluid near
the container centreline bows forming the ‘bulk meniscus’ which recedes upstream.
The flow process is backlighted by a diffuse light source and filmed at a long working
distance with a high-speed cine-camera at 128 frame/s. A sample of frames at 0.2 s
intervals taken from the film records is provided as figure 2 for 2.0 cS silicone oil
fluid (PDMS) in a 22.6 mm equilateral triangular cell. Quantitative data are digitized
directly from the film records.

The principle variables for the drop tests are the container face width D and fluid
viscosity µ. Corner half-angle α and liquid–solid contact angle θstat are also parameters
of interest, but in this report only systems with θstat = 0 will be considered. The
properties of the liquids and test cells for the tests to be presented are listed in
tables 4 and 5, respectively.

The physical condition of the corner is critical for such flows. Figure 8 displays the
joining technique of the faces of the cells. These cells are fused at the joints. In order
to assess fabrication variability, two of each cell were constructed.

The majority of the tests are performed using cells of square or equilateral triangular
cross sections, figures 8(a,b). For both of these configurations, the cells are fabricated
such that the meniscus centreline along the corner h(z, t) can be viewed in profile with
a minimum of optical distortions. A ray trace analysis which provides corrections
for distortion due to mismatch of the refractive indices is employed for certain
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Figure 8. Cross-sections of capillary rise test cells. The square (a) and equilateral triangular (b)
cross-sections were constructed of two pieces of acrylic, while the rectangular cross-sections (c) used
four pieces.

measurements. These corrections are never greater than 10% in the measured value
of h(z, t) and in most cases are <∼ 3%.

Cell preparation includes washing with a soap solution in hot water, rinsing
thoroughly with distilled water, then rinsing with ethanol and/or methanol followed
by a final distilled water rinse. The cells are allowed to air dry or are dried in a
vacuum oven.

4.3. Tip location, L(t)

The principal measured quantities from the film records are the location of the
leading tip of the fluid in the corner L(t) and the height along the centreline,
h(z, t), see figure 4. (Measured quantities are presented dimensionally unless otherwise
specified, all length measurements are in mm.) A sample of results forL(t) is provided
here, while a comprehensive analysis of h(z, t) for several data sets is deferred to §4.4.
Figures 9–11 made using a film motion analyser in manual mode without image
processing, are intended to convey the general character of the flow.

Figure 9 displays data on the effect of viscosity on the tip location L(t) for
tests performed in an equilateral triangular section container with D = 12.0 mm.
As suggested by table 3, data for different values of the viscosity collapse onto a
single line by using the parameter (σt/µ)1/2. As anticipated, the tip velocity increases
with decreasing viscosity and increasing cell size as also observed by Dong & Chatzis
(1995). Figure 10 shows the impact of cell size and corner angle on the tip location for
a fluid of fixed viscosity. The 22.6 mm triangle (12.0 mm triangle) has approximately
the same inscribed circle radius as the 12.9 mm near-square (6.1 mm near-square).
The collapse of the data with (FiHt sin

2 α/f)1/2 is favourable. When the raw unscaled
data are viewed, it can be seen that the tip velocity is greater for α = 30◦ compared to
α = 45◦, as indicated by the scaling, §3.4. Figure 11 illustrates the effect of container
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Figure 9. The location of the tip of the fluid column L (mm) as a function of (σt/µ)1/2 (m1/2) in
the equilateral triangle with D = 12.0 mm for fluids of different viscosity: �, 1.0; 4, 2.0; ©, 5.0;
5, 10.0 cS.

aspect ratio for rectangular cross-sectioned cells and fixed fluid properties, as described
by (3.4).

Multiple drop tests are made to note the repeatability of the measurements in
regard to cleaning technique, fill technique, etc. Each test was performed up to 18
times. The majority of tests show repeatability to within ±6% when comparing fitting
parameter coefficients for the different runs and ±3% is common. With this level of
precision it is easy to quantify differences in flow behaviour from vessel to vessel, and
even from corner to corner of the same vessel. Concerning the latter, as regards the tip
location, asymmetric flows are detected between different corners of the same vessel.
These differences are repeatable (again to within ±6%) and are assumed to be linked
to discrepancies in the fabrication quality of the corners. The largest differences are
observed in the tip location measurements for the rectangular cross-section vessels,
yet are always less than 10%.

When the Concus–Finn condition is satisfied, regardless of the gravity level, a thin
column of fluid already exists in the corner prior to the drop test (Concus & Finn
1974b). This pre-existing film makes ambiguous the true tip location of the meniscus
during the early stage of the drop tests. An apparent L(t) was thus measured at the
onset of the flow by extrapolating the apparently linear meniscus profile near the tip
to the vertex of the corner. As the fluid column rises, upper portions of the corners
are reached where the film is not observed and data taken in these regions needs no
extrapolation.

Another complication in the tip measurements is that during the latter stages of
the corner flow the tip location for some of the tests (usually low-viscosity fluids
in the smaller test cells) becomes increasingly difficult to locate as the slope of the
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Figure 10. The tip location L (mm) as a function of (FiHt sin
2 α/f)1/2 ((m s)1/2) illustrating the

effect of cell size and corner angle for a wetting fluid of kinematic viscosity 5.0 cS. 4, D = 22.6 mm
triangle; 5, 12.0 triangle; �, 12.9 near square; and �, 6.1 near square. The fluid rises fastest when
the cross-sectional shape is an equilateral triangle, α = 30◦.
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Figure 11. The tip location L (mm) as a function of t1/2 (s1/2) in rectangular cells for a fluid of
ν = 5.0 cS showing the effect of aspect ratio. ©, D1 × D2 = 6.1 × 6.7 mm, 5 6.0 × 13.0; and �,
6.1× 25.6. As expected from (3.4), aspect ratio has only a weak effect.
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Su D ν tH Hexp H3−poly tε tvisc tεR
Test (ρσH/µ2) (mm) (cS) (s) (mm) (mm) (×100 s) (s) (s)

ST1 41 300 12.0 1.0 0.25 1.80± 0.09 1.94 0.009 0.47 0.17
ST10 417 12.0 10.0 0.4 1.97± 0.08 1.94 0.09 0.047 1.7
LT2 20 000 22.6 2.0 0.4 3.73± 0.15 3.67 0.32 0.84 0.65
LT20 202 22.6 20.0 1.0 3.70± 0.14 3.67 3.2 0.084 6.5

Table 6. Data for capillary rise tests for a range of Suratman numbers in small D = 12.0 mm
and large D = 22.6 mm equilateral triangular containers. For t > tH the constant height condition
is established. Hexp, the measured value of the constant height h(zH , t > tH ), compares well with
H3−poly , which is calculated from (3.5). The time constants associated with satisfying the assumptions
of a slender column in the corner tε, negligible inertia tvisc and a slender column throughout the
container tεR are shown.

meniscus approaches zero. For these tests, repeat measurements of a single test event
show measurement repeatability of ±3–6% when comparing fit coefficients.

4.4. Surface profile, h(z, t)

Four tests of the capillary rise of PDMS in equilateral triangular cells (α = 30◦) are
chosen for detailed measurement. These tests are representative of the parametric
range of Su accessed in the drop tower experiments, see table 6. The four runs are
selected from a family of tests conducted to explore repeatability and sensitivity to
container surface conditions. Within each family, the measurements of the surface
profiles are statistically equivalent whether the containers are initially dry or are
pre-wetted with a thin film of the test fluid, whether minutes or days, prior to the test.
This agreement is not common for spontaneous capillary flows (Mumley, Radke &
Williams 1986; Weislogel 1997), but may occur for these tests because of the natural
pre-wetting of the corner.

Ten digitized surface traces for the corner flow of test LT2 are presented in figure 12.
These data are acquired using an automated image analysis system which digitizes
the cinefilm records for selected frames and tracks the development of the meniscus
in time. The grabbed images are low-pass filtered and a median threshold is selected
to define the interface which is then skeletonized. Figure 12(a) suggests that there is a
location z = zH ' 11 mm such that the height h(zH, t) ≡ H is fixed for sufficiently long
times t > tH . A magnification of the region near this location shows that all of the
curves for t > tH ' 0.4s pass through a narrow neighbourhood near zH , figure 12(b).
Measurements of the local centreline height, h(zi, t), at several z-locations, zi, in this
region are presented in figure 13, where the distance between each zi is approximately
1.5 mm. As can be seen from the figure, depending on zi, h(zi, t) will in general under-
or overshoot h(zH, t) ≡ H . The curves for t > 0.7 s are fit with linear coefficients to
locate z = zH such that h(zH, t) = Hexp = const. Interpolation between the smallest
positive and negative slopes provides the empirically determined z = zH = 11.24 mm
and Hexp = 3.73 ± 0.15 mm. This location then defines the apparent origin where
the constant height boundary condition of the asymptotic analysis can be applied. In
subsequent figures, the origin is moved to z = zH . Downstream of this location h is
always increasing towards H while upstream h is decreasing everywhere to this same
level. Since only limited time was available for these tests the long-time behaviour of
the boundary condition at zH cannot truly be confirmed. However, the results of Dong
& Chatzis whose experiments lasted hours offer strong evidence that the constant
height (‘constant pressure’) condition is acceptable. The value H3−poly = 3.67 mm
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Figure 12. The interface height h(z, t) measured along the x-axis for LT2. (See table 6 for the
parameters of this run.) The coordinates x and z are in mm, with an arbitrary origin. The centreline
of the cell is located at x ≈ 30 mm and the corner is at x = 43.0 mm. Before the rig is dropped,
except for the meniscus near the corner, the interface is located along zo. During free fall, as time
increases the profiles advance along the corner and recede at the centreline. The surface profiles are
shown for times t = 0, 0.078, 0.156, 0.234, 0.312, 0.390, 0.547, 0.703, 0.859, and 1.015 s. (a) Global
profiles from the wall to cell centreline. (b) Enlarged view of dashed box area on (a). Coordinates
of the constant height location (xH, zH ) are indicated. Except for the three earliest times, all profiles
pass close by (xH, zH ).

determined analytically from (3.5), compares well with the experimental value for
this test. The values of Hexp for all four runs show good agreement with H3−poly , see
table 6.

The experimental values for tH are included in table 6. These values, along with zH
for each test, are used as the space and time origins in figures 14 and 15 which show
the scaled ‘height’ F+ as a function of the scaled ‘distance’ η+ (a = 0) for the four
tests. The similarity solution presented in §3.1 is provided for comparison.

Figures 14 and 15 reveal that, in general, the measured height is converging to the
analytical result as time increases. However, these figures also show a progressively
poorer description of the flow with increasing viscosity and cell size. Agreement
between experiment and theory is especially good in figure 14 in a lengthening
region from η+ = 0 downstream. The most persistent discrepancy between theory and
measurement is near the tip, yet nearly full agreement is achieved by the end of the
tests. The lack of such agreement in figure 15 will be addressed in the next section.

5. Discussion: capillary rise
For the capillary rise problem, as the fluid column extends in length along the

corner, the time for information about the upstream boundary condition to propagate
downstream to the tip is ∼ L2. Consequently, though the constant height boundary
condition is established at t = tH , the region near the tip will not respond to this
condition until some time later. Thus, for a time, the tip region acts independently of
changes in conditions at the origin. In order to determine the scaling suitable to the
tip region, the surface profile measurements were analysed for t < tH . As an example,
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Figure 13. h(zi, t) (mm) as a function of t (s) for LT2, the run shown in figure 12. Each of the six
data sets is taken for constant zi with an increment of approximately 1.5 mm between each zi. With
linear fits to the data for t > 0.7 s, interpolation yields the z-location for which the variation of h
with time is zero: zH = 11.24 mm, where Hexp = 3.73 ± 0.15 mm and is shown by the dashed line.
This value compares favourably with H3−poly = 3.67 mm as determined from (3.5).

figure 16 displays h(zH, t) for test ST10. Hexp and tH are provided on the figure for
reference.

It is seen that the slope a ≈ 1/5 models a significant duration of the ‘start-up’
flow prior to the establishment of the constant height condition, though preliminary
tests indicate that this behaviour may not be universal. The data at the earliest times
may be captured by the length-scale-independent linear solution with a = 1, but not
enough data are available to be conclusive. As shown in §3.2, the case a = 1/5 models
a constant inlet flow rate. By choosing the tip of the flow as the origin, the data of
figure 14(b) are rescaled by using a = 1/5 and plotted in figure 17. A general collapse
of the data for t < tH is established over the entire interval 0 6 η+ 6 1, shown by
the small dots. For t >∼ tH the solution becomes an increasingly poorer description
of the flow near η+ = 0 as shown by the larger symbols (same symbols as used in
figure 14b). Also, note from figure 17 that for all times the surface traces generally
collapse near the tip. This feature illustrates the insensitivity of the flow/solution near
the tip to the value of the similarity parameter a.

5.1. Start-up

The release mechanism used in the drop tower experiments provides a nearly dis-
continuous reduction of g by severing a wire supporting the experiment. The initial
response of the fluid to this sudden reduction in body force is complicated by inertia.
If the Bond number (Boi ≡ ρgR2/σ) of the system prior to release is large, the fluid
experiences a number of inertial regimes.

When Boi � 1 the only interfacial length scale is the capillary length Lc ∼ (σ/ρg)1/2.
This length is independent of any system (container) length scale, R, provided
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Figure 14. The evolution of the interface in terms of the similarity variables F+(η+) for the
smaller container, D = 12.0 mm. The solution from (3.2) for a = 0 is shown as the solid line. The
measurements are shown as symbols. The largest difference between measurement and theory, near
the tip η+ = 1, diminishes with increasing time. (a) Test ST1: ν = 1 cS at times ©, 0.352; •, 0.508;
5, 0.664; 5, 0.820 and �, 0.977. (b) Test ST10: ν = 10 cS, at times © 0.586, •, 0.976; 5 1.367, 5,
1.758 and �, 2.031. All times are in (s).

Lc/R � 1. It can be shown that the initial inertial response of the interface oc-
curs within

tLc ∼
(
ρL3

c/σ
)1/2 ∼

(
σ/ρg3

)1/4
. (5.1)

Such inertial transients have been studied previously regarding the response of an
interface in a circular cylinder to a step reduction in gravity level (Siegert, Petrash &
Otto 1964; Weislogel & Ross 1990 and Wolk et al. 1997). As an example, Siegert et
al. (1964) find that tLc = C(ρR3/σ)1/2, where R is a characteristic length and C is a
constant which depends on the container geometry; for a right circular cylinder of
radius R, C = 0.413. For these tests, if R is taken as the distance of the container
axis to the meniscus centreline at zH , for the equilateral triangle, R = D/

√
3 − H ,

and thus, using C = 0.413, tLc is determined to be 0.080 s for LT2 and 0.031 s for
ST10. These values are comparable to the ‘reorientation time’ of the bulk menisci
extrapolated from measurement, figure 18, where it is seen that tLc ≈ 0.09 s for LT2
and ≈ 0.03 s for ST10. Part of this initial response is the production of capillary waves
of wave-length Lc which emanate from the contact line region and propagate with
velocity ULc ∼ (σg/ρ)1/4 across the surface. So the container length scale becomes
relevant after a characteristic time

tRLc ∼ R/ULc ∼ R
(
ρ/σg

)1/4
. (5.2)

The inertial response of the entire system then dominates and is characterized by

tR ∼
(
ρR3/σ

)1/2
. (5.3)
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Figure 15. As figure 14 but for the larger container, D = 22.6 mm. The agreement with theory is
not as good as for the smaller container shown in figure 14. (a) Test LT2: ν = 2 cS, at times ©,
0.547; •, 0.703; 5, 0.859 and 5, 0.977. (b) Test LT20: ν = 20 cS at times ©, 1.17; •, 1.56 and 5,
2.07. All times are in (s).

If Boi
<∼ O(1) prior to release, Lc ≈ R and the manifold inertial time regimes described

by (5.1)–(5.3) above reduce to the single time scale given by (5.3), since in this limit
tLc = tRLc = tR .

The scenario that emerges, then, is as follows. Initially the flow is inertially dom-
inated. A linear transient a = 1 may then follow. Afterwards, the fluid is drawn
into the corner according to the a ≈ 1/5 solution. As the fluid redistributes, after
some time tH , a constant height boundary condition is established where the a = 0
similarity solution is applicable. In the overlap period between a = 1/5 and a = 0
behaviour, the constant height boundary condition imposes itself on a lengthening
interval, chasing the a = 1/5 tip solution and finally overwhelming it. What will be
observed, then, is a flow which, at first, grows linearly with time ∼ t, followed by
∼ t3/5 growth leading into the ∼ t1/2 growth characteristic of the contstant-height
boundary condition. A sequence of transitions between flow regimes is also seen by
Dreyer, Delgardo & Rath (1994) for the transient capillary rise of a liquid index
between parallel plates where the column height progresses from inertial (∼ t2), to
entrance region (∼ t), to viscous (∼ t1/2) regimes.

5.2. Time scales for validation of theory, discussion

The time scales required for validation of the slender column and negligible inertia
assumptions for the corner flow solutions can be computed using the solution for
L(t) with ε = H/L(t),

ε2 � 1 yields t� tε ≡ 0.345µHf/σFi sin
2 α, (5.4)

R � 1 yields t� tvisc ≡ 0.5H2 sin2 α/Fiν, (5.5)
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Figure 16. The interface height h(zH , t) for ST10 measured at the axial location where the constant
height H is established for t > tH . Prior to tH , beginning at about t = 0.078 s, the height increases
with a slope a = 1/5 indicating that the constant flow rate similarity solution of §3.2 models the
flow. Though the data are too sparse to show it definitively, the length-scale-independent solution
which yields linear growth, a = 1, may model the flow at early times. The first data point is at time
t = 0.039 s.
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Figure 17. Interface height for test ST10 in which the data have been measured from a common
tip location η+ = 1. For times t < tH , small solid dots, the measurement and the constant flow rate
similarity solution (a = 1/5) of §3.2 agree. The times t > tH are shown by the same larger symbols
as in figure 14(b); as time increases the constant flow rate solution becomes an increasingly poor
description, as the a = 0 solution (of figure 14b) becomes established over an increasing interval in
η+. Note that the slope at the tip, which is independent of a, matches the similarity solution for all
time.

respectively. Times tε and tvisc are computed and listed in table 6. For the tests
under consideration, f = 1. Thus, the slender column and slight corner axis curvature
requirements are equivalent.

The above scales are in general satisfied for the test data presented. However, for
the time available during the drop tests, a general decrease in agreement is observed
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Figure 18. The axial location Z (mm) of the receding bulk meniscus as a function of t (s) for tests
ST10 (�) and LT2 (5). The distance Z is measured from the lowest point of the bulk meniscus (see
figure 2). The inertial time tLc indicates the transition from inertial reorientation to the capillary
flow regime, tLc = 0.03 (0.09) for � (5).

with increasing viscosity (cell size fixed) and increasing cell size (viscosity fixed).
This disagreement is most noticeable in the curvature along the flow direction, see
figure 15(b), in which upstream of an inflection point, the curvature of the data is
opposite to that of the theory. As time increases, more fluid is pumped into the corner
and the inflection point moves upstream until it is eventually out of the similarity
solution regime described by η+ > 0. The discrepant corner axis curvature may be
interpreted as the influence of bulk meniscus curvature, see §6. This influence wanes
with time as the bulk meniscus recedes upstream, farther from the location of the
constant height condition.

The fact that the disagreement increases with increasing viscosity argues against
the influence of the viscous time scale tvisc based on R � 1. This is surprising on
the grounds that the viscous time scale R2/ν based on container size is often large
(e.g. ∼ O(5 s) for ST1 and ∼ O(10 s) for LT2, and up to ∼ O(40 s) for some of
the tests performed)! The slender column assumptions ε2 � 1 and ε2f � 1 capture
the correct trends, namely t ∼ µH/σ, but have short time scales. While the original
scaling of the problem was based on the isolated flow in the corner where the height
of fluid is characterized by H , when addressing the global container flow, R should
replace H . Typical values for this global time scale tεR , which characterizes the time
for the flow throughout the container to be slender ε2

R ≡ (R/L(t))2 � 1 are listed in
table 6. Test ST1 (figure 14a) is well described by the theory by the end of the run at
1 > tεR = 0.17 s while test LT20 (figure 15b) is not fully described by the theory by
the end of its run at 2 6> tεR = 6.5 s. This suggests that container-sized curvature may
set the time scale at which the theory becomes applicable.

Consider, as described earlier for systems with Boi � 1 at time t = 0−, that
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the initial inertial response of the fluid is governed by the length scale Lc which is
independent of container size. Thus, the flow rate for the start-up problem should be
independent of container size. If this is true, a larger amount of fluid per container
cross-sectional area rises in a smaller container than in a larger container during
0 < t < tH . This implies that, for fixed fluid properties, the bulk meniscus is further
upstream from the constant height location in smaller containers at tH . We speculate
that the influence of the bulk meniscus curvature may be significantly stronger in a
larger container due to its proximity to the constant height location at tH .

6. Global similarity solution: capillary rise
A ‘global’ similarity solution may be developed for the capillary rise problem

exploiting insights from the experimental observations, §4 and §5. The solution is
appropriate for large times and is applicable throughout the container, not just
downstream of the constant height location.

Dong & Chatzis (1995) conducted experiments for long times t/tH � 1 and found
that the centreline of the bulk meniscus recedes upstream ∼ t1/2. So for long times,
this point can be described by η+ ≡ η+

b = const < 0. In the region of the bulk
meniscus, axial curvature is comparable to transverse curvature so the asymptotic
analysis cannot be applied. Postulating that this region is of fixed length or, at most,
grows like tγ where γ < 1/2, the bulk meniscus region shrinks to a single location η+

b

as t → ∞ and for long times the asymptotic analysis can be applied throughout the
flow domain. Application of these observations leads to a similarity solution F+(η+)
valid over the entire flow domain η+

b 6 η
+ 6 1.

To determine a global solution, (3.2) is augmented by the integral mass balance,
which, after substituting λ2 = 1/F+(0) and H ≡ FHD, becomes

−A1η
+
b F
−2
H F+2

(0) =

∫ 1

η+
b

F+2
dη+, (6.1)

where, for the n-polygon, the scaled sector area is given by A1 = (1/4FA) cot π/n. As
discussed in §3.1, FH may be approximated using the technique of de Lazzer et al.
(1996). Equation (6.1) may then be solved directly for η+

b ; for run ST1 this yields
the vertical segment η+

b = −0.058 . . . which serves as a limit to the data as t → ∞,
figure 19.

Since the upstream moving bulk meniscus appears to approach an invariant shape
for long times, the pressure in the cap also approaches a constant. Thus, rather than
apply the constant pressure condition at the origin, it can be applied at η+

b . It now
is appropriate to non-dimensionalize the formulation based on the height Hb, which
characterizes the bulk meniscus region, rather than on H . The invariant form of
governing equation (3.2) remains unchanged, but is now subject to h = 1 = F(ηb) and
the integral mass balance

−A1η
+
b F
−2
b F+2

(η+
b ) =

∫ 1

η+
b

F+2
dη+, (6.2)

where λ2 = 1/F+(η+
b ) and Hb ≡ FbD. After F+ is determined by solving the invariant

governing equation, (6.2) may be solved directly for η+
b allowing λ and hence ηtip to

be determined. This solution formulation produces the constant height location at
η = 0 as a byproduct. In order to implement this method of solution, the pressure
in the cap or, equivalently, Hb needs to be evaluated. However, we are unaware of
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Figure 19. The region in which three-dimensional effects are important shrinks to a point η+ = η+
b

as t → ∞. So, for long times, the constant height similarity solution (a = 0), shown by the solid
line, can be extended upstream of the origin, η+ < 0. As time increases, the data from test ST1
(using the same symbols as in figure 14a) approach the long-time solution throughout the domain.
In particular, note that the data from the bulk meniscus region tend to the vertical line at η+ = η+

b .

any solution to the three-dimensional geometry for t → ∞ which would yield these
values. It is interesting to note, though, that for a broad range of upstream conditions
FH 6 Fb 6 2FH the tip location varies only slightly 1.605 6 ηtip 6 1.702. This further
testifies to the tip solution being insensitive to the upstream boundary conditions.

7. Summary of results
In this work the equations describing capillary flows in containers with interior

corners are analysed under the constraints of a slender fluid column, slight surface
curvature along the flow direction, low inertia, and low gravity. The quasi-steady
viscous streamwise flow is solved, averaged over the cross-sectional area, and using a
local mass balance a second-order nonlinear diffusion equation for the height of the
meniscus h(z, t) is derived.

Attention is given to the scaling. The velocity scale accounts explicitly for much
of the variation of the flow resistance coefficient; the contribution which must be
evaluated numerically varies only slightly, 1/8 <∼ Fi 6 1/6. The scaling also clarifies
the geometric influence of corner half-angle α and contact angle θ to permit the
effects of container size, container geometry (including aspect ratio), and system
contact angle, whether static or dynamic, to be assessed by inspection of the closed
form results, see table 3 and §3.4.

A generalized similarity equation is solved for a range of the transform parameter,
a, and it is shown that a linear tip solution is valid near the tip for any choice of
a. The similarity solution of Dong & Chatzis (1995) for the case of a capillary flow
in an initially empty corner, where at time t = 0+ fluid is introduced at a constant
height of the meniscus h(0, t) = H , is re-formulated and solved (a = 0). This is called
the ‘capillary rise’ problem in this study. Similarity solutions for a constant inlet



Capillary flow in an interior corner 375

flow condition, a spreading drop (constant volume), and an exponential inlet flow
condition are also listed. It can be shown that the constant flow and constant volume
problems yield minimized time constants for α ' 17◦, θ = 0, while the constant height
and exponential flows are minimized when α ' 30◦, θ = 0.

Test data are presented for the specific problem of capillary rise in interior corners
after a step reduction in gravity. An extensive data set over a previously unexplored
range of flow parameters is collected using a 2.2 s drop tower. Measurements using a
zero contact angle fluid (θ = 0) reveal repeatability and accuracy, the role of inertia
and column slenderness, and the effects of corner half-angle, container size, container
aspect ratio, and fluid properties.

The initial transient due to the step reduction of gravity, characteristic of most
drop tower tests, is governed by the inertial response time of the interface, tLc . The
flow at small times may be length-scale independent as modelled by the similarity
solution with a = 1. An experimental data set is presented which demonstrates that
for intermediate times the flow is described by a constant flow-like similarity solution,
where a ≈ 1/5. Preliminary results on other runs indicate that the value of a which
best models the flow for these intermediate times may not be universal.

A location along the interface which remains stationary as the flow evolves was
found. This value agrees favourably with that computed using the method of de
Lazzer et al. (1996) for static interfaces. This constant height condition yields a
similarity solution with t1/2 dependence for the flow. The time tH required to establish
this constant height is used as the time origin for comparisons of the similarity
solution to the experimental results. The experiments agree well with the analysis in
an expanding interval extending downstream from the constant height location. As
flow along the corner begins prior to tH , the tip location is not well predicted at short
times.

Measurements made in smaller containers compare better with theory. This agree-
ment is not due to the diminished role of inertia or a more dominant presence of
viscous effects. The time scales on which viscous forces come into play are compara-
ble to the total time of the experiments (see table 6). Furthermore, it is found that
agreement between theory and experiment improves as viscosity decreases. It appears,
then, that the rapid establishment of parallel flow alone validates the asymptotic
analysis. We speculate that the improved agreement with decreasing container size is
attributable to the diminished role of three-dimensional interface curvature arising
from the bulk meniscus.

A global similarity solution for the capillary rise problem was formulated which
describes the flow throughout the container at long times. The domain of the similarity
solution is then set by an integral mass balance equation. The boundary conditions
for the problem include the specification of the pressure in the liquid at a location
where η+ = const.

In overview, then, it is observed that the initial transient experienced by the fluid is
governed first by inertia during the formation of the capillary surface t <∼ to (where
perhaps L ∼ t as given by a linear solution), then by a constant flow-like regime for
to

<∼ t <∼ tH (L ∼ t3/5), then by an overlap regime beginning at t ' tH in which the
constant height similarity profile extending from the origin is joined to a tip solution,
and finally by the constant height solution alone for t� tH (L ∼ t1/2).

Direct application of the results contained herein may be made to fluid systems in
the low-gravity environment of space. Because the flow is to a large extent controlled
by the nearly parallel flow along the corner, inertia may be successfully ignored. The
large length scale systems which can arise in the low-g environment produce fast flows
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(large Su) several orders of magnitude larger than in similar terrestrial flows. Low-g
experiments with spreading drops in open corners may provide an excellent data base
with which to compare further analyses: for this flow scenario an exact analytical
expression is available, and the influence of first-order inertia, dynamic contact angle,
and/or corner-axis curvature may then be incorporated within an asymptotic analysis.

Support for this work was provided by NASA’s Microgravity Science and Appli-
cation Division, NASA Lewis Research Center, and the Office of Naval Research
under grant N00014-92-1-1137. M.M.W. acknowledges his good fortune of having as
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Lloyd Trefethen and Andrew J. Bernoff are thanked for helpful discussion. Jennifer
Kadlowec, Mike Luli, and Mark Pillar provided assistance in the collection of the
data.

Appendix. Fi solution detail
In this Appendix two approximate expressions, FI and FII , are found for the flow

resistance coefficient Fi in the limit of small and large corner half-angle α, respectively.
An exact solution FIII is also presented. These solutions are shown on figure 6.

FI , Small corner angle solution, tan2 α� 1

In the limit α2 � 1, an expansion for wo may be written wo = woo +wo1
tan2 α+ . . . and

when substituted into (2.5) yields wo = Poz(y
2 − x2)/2 cos 2α. The average velocity,

〈wo〉I , may in turn be determined using

〈wo〉I = − Poz tan α

h2FA cos 2α

∫ ym

0

∫ So

y

(y2 − x2)dx dy. (A 1)

Upon substitution of the quantities Po, So, ym, and f from (2.7)–(2.10), the above
integration yields 〈wo〉I = −FIhz . Some limiting values of FI are

FI (δ
2 � 1) = 1/6 + α2/3 + αδ/90 + O(α4, δα3, δ2α2, δ3α, δ4),

FI (δ = π/2− α) =
1

6
+
α

3

(
1− 5π

16

)
+
α2

2

(
3− 5π

12
− 5π2

48

)
+ O(α3),

which reveal that in the limit tan2 α→ 0, FI → 1/6, and thus 〈wo〉 = −hz/6.

FII , large corner angle solution, Ω2 � 1

Substituting Ω (≡ π/2 − α) for α and dividing by sin2 α (2.5) in the limit Ω2 � 1
becomes P̄oz = woxx + Ω2woyy , subject to wo = 0 on x = y and wox − Ω2Soywoy = 0

on x = So, where P̄o = Po/ cos2 Ω. The system for wo = woo + Ω2wo1
+ . . . is solved

yielding

woo = P̄oz
(
x2/2− y2/2 + h(y − x)

)
, (A 2)

wo1
= woo + P̄oz

[
yk

h

(
2y2 − x2 − xy

)
+

k

6h

(
x3 − 3x2y + 2y3

)
+

(
4yk +

y2k2

h2

(
y − 3h

2

)
− kh

2

)
(x− y)

]
, (A 3)

where k = φ(1−φ/2) and φ ≡ δ/Ω. Note that these expansions are correct regardless
of the sign of δ as long as δ2 � 1 is maintained. In this way positively and negatively
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curved surfaces may be solved. No solution of this nature is possible for |δ| ∼ O(1).
The average velocity 〈wo〉II is determined to O(Ω2) using

〈wo〉II =
2 cotΩ

h2FA

∫ ym

0

∫ So

y

(
woo + Ω2wo1

)
dx dy. (A 4)

Performing the integration produces 〈wo〉II = −FIIhz . Some limiting values of FII are

FII (φ = 0) = 1/6 + Ω2/3 + O(Ω4),

FII (φ = 1) = 1/7 + 49Ω2/180 + O(Ω4),

FII (φ = −1) = 0.183 + 0.391Ω2 + O(Ω4).

FIII , Exact solution, α = θ = π/4

An analytic solution for Fi is adapted from classic solutions of viscous flows in non-
circular ducts (White 1974). For the case α = π/4, θ = π/4, δ = 0, it can be shown
that

FIII = −1

3

[
1− 192

π5

∞∑
i=1,3,5...

tanh iπ/2

i5

]
= 0.14057 . . . . (A 5)
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